Endothelial Cell Laminin Isoforms, Laminins 8 and 10, Play Decisive Roles in T Cell Recruitment across the Blood–Brain Barrier in Experimental Autoimmune Encephalomyelitis
نویسندگان
چکیده
An active involvement of blood-brain barrier endothelial cell basement membranes in development of inflammatory lesions in the central nervous system (CNS) has not been considered to date. Here we investigated the molecular composition and possible function of the extracellular matrix encountered by extravasating T lymphocytes during experimental autoimmune encephalomyelitis (EAE). Endothelial basement membranes contained laminin 8 (alpha4beta1gamma1) and/or 10 (alpha5beta1gamma1) and their expression was influenced by proinflammatory cytokines or angiostatic agents. T cells emigrating into the CNS during EAE encountered two biochemically distinct basement membranes, the endothelial (containing laminins 8 and 10) and the parenchymal (containing laminins 1 and 2) basement membranes. However, inflammatory cuffs occurred exclusively around endothelial basement membranes containing laminin 8, whereas in the presence of laminin 10 no infiltration was detectable. In vitro assays using encephalitogenic T cell lines revealed adhesion to laminins 8 and 10, whereas binding to laminins 1 and 2 could not be induced. Downregulation of integrin alpha6 on cerebral endothelium at sites of T cell infiltration, plus a high turnover of laminin 8 at these sites, suggested two possible roles for laminin 8 in the endothelial basement membrane: one at the level of the endothelial cells resulting in reduced adhesion and, thereby, increased penetrability of the monolayer; and secondly at the level of the T cells providing direct signals to the transmigrating cells.
منابع مشابه
Kinetics of T cell response in the testes and CNS during experimental autoimmune encephalomyelitis: Simultaneous blood-brain and -testis barrier permeability?
Objective(s): Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are regarded as autoimmune diseases of the central nervous system (CNS). The CNS, testes, and eyes are immune privileged sites. It was initially presumed that ocular involvement in EAE and infertility in MS are neural-mediated. However, inflammatory molecules...
متن کاملP-selectin glycoprotein ligand 1 is not required for the development of experimental autoimmune encephalomyelitis in SJL and C57BL/6 mice.
In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the endothelial blood-brain barrier and gain access to the CNS. The involvement of P-selectin glycoprotein ligand 1 (PSGL-1) and of its major endothelial ligand P-selectin in this process have been controversial. In this study we demonstrate that although encephalitog...
متن کاملDystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis
The endothelial cell monolayer of cerebral vessels and its basement membrane (BM) are ensheathed by the astrocyte endfeet, the leptomeningeal cells, and their associated parenchymal BM, all of which contribute to establishment of the blood-brain barrier (BBB). As a consequence of this unique structure, leukocyte penetration of cerebral vessels is a multistep event. In mouse experimental autoimm...
متن کاملEndothelial cells of the blood-brain barrier: a target for glucocorticoids and estrogens?
Adhesion molecules are involved in the leukocyte recruitment of leukocytes at the blood-brain barrier. For this reason, it is important to understand how the regulation of their gene expression controls lymphocyte adhesion to endothelial cells in microvessels. Indeed, due to their specificity and diversity, adhesion molecules involved in extravasation play an essential role in the recruitment o...
متن کاملDifferentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity
CD4+ T cells play a central role in orchestrating protective immunity and autoimmunity. The activation and differentiation of myelin-reactive CD4+ T cells into effector (Th1 and Th17) and regulatory (Tregs) subsets at the peripheral tissues, and their subsequent transmigration across the blood-brain barrier (BBB) into the central nervous system (CNS) parenchyma are decisive events in the pathog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 153 شماره
صفحات -
تاریخ انتشار 2001